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Abslract Boundary effects play an essential role in determining the physical properties of 
semiconductor quantum wires. Additional features come into play when one considers 
inhomogeneous boundaries, i.e. wires whose widths are functions of distance along 
the length of the wire. We show that, in the adiabatic approximation (which assumes 
that the boundary patential fluctuation effects, or equivalently, the variations in the 
wire width, occur on a scale much larger than the inverse of Fermi wavelength). the 
boundary problem far a quantum wire is equivalent to a one-dimensional Schrbdinger 
equation along the wire with (i) an effective potential provided by the deviation from 
the homogeneous boundary and, (ii) a wave function coupled to the lateral direclion. 
In the periodic boundary fluctuation case, the subbands of t h e  system split into many 
mini-subbands, and became a useful system to test ID band theory. When the boundary 
fluctuates randomly, there exists in each of the subbands a mobility edge, below which 
lhe e le~t ron  slates are localized. The localization of the tail stales of the lop populated 
subbands makes the conductance drop smoathly whenever the Fermi energy passes thc 
bottom of a new subband. The theoly explains the recent experiments of Smith and 
ea-worken. 

1. Introduction 

Recent improvements in nano-fabrication techniques are continually reducing the 
size of semiconducting devices [1,2] to the point where one obtains a semiconductor 
wire with a width comparable to the Fermi wavelength (of the order of 103A) of 
the electrons. Then the lateral electron states are quantized into subbands, usually 
with several subbands being populated. Very often, these semiconductor quantum 
wires were obtained using a high-mobility twodimensional (2D) electron gas as the 
starting material upon which a laterally confined potential is imposed by various 
nano-fabrication techniques. The result is referred to as quasi-one-dimensional (QID) 
system. 

To date, various experimental efforts [1,2] have been made toward exploring the 
new physics emerging from a study of these 0111 systems, such as quantum ballistic 
conductance, weak localization phenomena, the extreme strong depolarization effect 
of the intersubband resonance transition, and the abnormal conductance near the 
tail regions of the subbands. On the theoretical side [3-91 it is becoming clear that 
the inhomogeneity of the wire boundaries (or, in other words, the variation in width 
of the  wires) plays an important role in understanding the new physics of the Q1D 
systems. For example, the weak localization phenomenon [3,6] in QID systems must 
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be discussed in conjunction with boundary effects. Also, our calculation [7] of the 
multiple-parallel uniform quantum wire system, based on a conventional transport 
theory extended from the bulk system, shows that the conductance always has a 
sudden drop whenever the Fermi energy reaches the bottom of another subband if 
a wire of uniform width is assumcd. This is true even when one considers the level 
broadening effect and the electron multi-subband screen effect. We will demonstrate 
later in this paper that the sudden drop of conductance will be smeared out once 
one considers inhomogeneous boundary efecu. Our work is also stimulated by the 
interesting numerical study of Kumar el a1 [9] in which they have shown that a 
smooth boundary potential is obtained for a semiconductor quantum wire even when 
the confining gate on the wire gives rise to an abrupt square potential. This is 
significant, because it implies that the well known adiabatic theory (see section 2) is 
applicable to the discussion of the boundary effects for the semiconductor quantum 
wires. 

The importance of the boundary (interface) effect for the quantum mechanically 
confined semiconductor system was first discussed in the study of the ZD systems [10- 
12). There, the activated temperature dependence of the conductivity at low carrier 
densities is attributed to the localization of the electron states in the band tail regions 
due to llre rundoni polenliul Jlucluations RI h e  inreface. This strong localization 
phenomenon was recently studied in the case of the semiconductor quantum wire 
by Nixon and Davis [8] in the context of the random fluctuation of the impurity 
potentials. On the other hand, at high carrier densities when there is more than 
one subband being populated for the quantum confined system, no general treatment 
exists in parallel to the above mentioned Mott-Stern theory [lo, 121. The property of 
the electron states in the case of multi-populated subbands is one of the main subjects 
of the present paper. In addition, we study the effects of wriations in the wire width 
due to fluctuations in the boundary along the lateral direction. When the fluctuation 
is random, all the states ncar the bottom of cach populatcd subband are localized. 
When the fluctuation is periodic, cach subband will split into mini-subbands. A brief 
account of the present work has bcen previously reported [13]. 

In section 2, under the assumption that the adiabatic approximation is valid, we 
give an analysis of the boundary effect in QID systems, and show that it is equivalent 
to solving a ID Schrodinger equation along the wire with: (i) an effective potential 
resulting from the deviation lrom the homogeneous boundary and (ii) a wave function 
coupled to the lateral direction. In section 3, the case of the random fluctuating 
boundary is studied. In section 4, we apply our results to discuss conductance near 
the subband tail region. Our results are summarized and discussed in scction 5. 
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2. Formulation 

Semiconductor wires are constructcd by applying a gate voltage to a two- 
dimensional system to produce lateral confinement. The fluctuations in the 
potential mean that, in essence, we have to deal with a two-dimensional 
Schrodinger equation. However, in the adiabatic approximation (which assumes 
that the potential variation occurs on a length scale much greater than the Fermi 
wavelength), the problem can be reduced to an effective one-dimensional problem. 
In this section we show that, in the adiabaric approximalion, the boundary fluctuation 
effects (which result in a variation in the wire width, which we take to be along the U- 
direction) on a QiD system are equivalent to solving a I D  Schrodinger equation along 
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the wire with: (i) an effective potential provided by the boundary fluctuation; and (ii) 
a wave function coupled to the lateral direction of the wire (the z-direction). The 
basic idea is implicit in the work of Mott [I21 on two-dimensional systems, carried 
out in the seventies. Recently, Glazman d a/ have explicitly used the adiabatic 
approximation to study the quantum ballistic transport of a microscopic constriction. 
It is our purpose here to use a similar approach to treat semiconductor wires of 
smoothly varying width. In particular, we stress that the adiabafic approximation is 
generally applicable to the Q1D systems where numerical study shows that a smooth 
potential is obtained even when the confining gate on the wire gives rise to an abrupt 
square potential [9]. 

The Schrodinger equation for an electron in a quantum wire with a lateral 
potential V ( z , y ) ,  has the form 

where, for simplicity, we have assumed that the electron has the same effective mass, 
m', along the z and y directions. In writing ( I ) ,  we have assumed that in the 
absence of the lateral potential V(z ,y ) ,  the ZD system we are concerned with has 
extended states (see, for example, [12], p 107). This is a good approximation for the 
experiments of interest [l, 171 where the sample size is of the order of microns and 
the mobility is very high so that the localization length is several orders of magnitude 
larger than the characteristic length of the sample. For example, for a typical 
expcrimental situation [I ,  171 the mean free path t =z 1.7gm and k,e =z 1.7 x lo2 so 
that we can use the formula given by Mott ([12], p 110) to evaluate the localization 
length L = ecxp(rrk,e/2) zz 1.7exp(267)~m which is clearly much larger than the 
sample size (=z 5pm).  

For an ideal sample, V ( z , y )  is homogencous along the wire (independent of 
z), and will be denoted as V(y). In this case, equation (1) is separable, and 
it follows that it has the eigen-energy tnk = c, + h2k2/2m'  and eigen-function 
Q n k ( z , y )  = ( l / A ) e i k z t n ( y ) ,  which satisfies 

Wc note that, in the literature, the harmonic potential with V(y) = fm'w:y2 and 
the hard wall potcntial with V(y)  = 0 for lyl < d and V ( y )  = w for 1y1 > d ,  are 
two typical models adopted for solving (2). In any case, we assume (2) is solvable. 

For a real sample, one expects V ( z ,  y)  has some fluctuation from V ( y )  at cach 
position of z while keeping the basic features of V(y)  adopted in the ideal model 
(2). For example, in the study of Glazman cf a/ for the quantum ballistic transport 
of a microscopic constriction [4] an z-dependent well width d ( z )  is introduced in the 
hard wall potential, where V ( z , y )  = 0 for IyI < d ( z ) .  Similarly, for the harmonic 
potential, one can introduce an z-dependence characteristic frequency wU(z )  so as 
to write V ( z , y )  = t m * w i ( z ) y 2 .  

We proceed, in a fashion pioneered by Born and Oppcnhcimer, by treating z as 
a parameter, so that it follows that for each z, there still exists a solvable lateral 
confinement equation similar to (2) 
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where the symbol (z) reflects the fact that (3) is different from (2)  only in the fact 
that some characteristic quantity (U" for the harmonic potential and d for the hard 
well potential) is now a function of 2. Using (3) and $(z,y) = Gn E p(z)[e)(y), 
(1) can be rewritten in the form of a ID Schrodinger equation: 
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Equation (4) tells us that the boundary fluctuation problem of a QlD system can 
be reduced to a ID potential problem. For this latter problem, there exists a vast 
literature 112,141 and so it can be readily handled. We note that the above formulation 
can equally be applied to the 2D boundary problem, where the variable z is replaced 
by ZD vector T .  For a related study of the 2D problem see, for example, [15]. 

Even though (4) is formally a ID potential problem, the actual solution of (4) is 
much more complicated due to the fact that the $,, in (4) is a 2D wave function 
with I and y very much coupled as seen by (3). The approximation involved in 
treating (4) as an effectively 1D potential problem is equivalent to the standard 
adiabatic approximation used in obtaining the wave equation for nuclear motionI6 
in the molecular problem, and it requires that thc change of (?)(y) is smooth 
in the range of ICF,!, where IC,, is the Fermi momentum of the nth subband. We 
expect that this approximation is good particularly for quantum wires, since the actual 
confinement potential is calculated self-consistently. In fact, a smooth potential is 
obtained even when the confining gate on the wire gives rise to an abrupt square 
potential? Therefore, in the following study we will heat (4) as an effective 1D 
Scbrodinger equation while keeping in mind that the $,, has a ZD form. 

When the boundary fluctuation is small so that the E " ( . )  in (3) and (4) 
deviates from the ideal value E ,  only slightly, it is more convenient to rewrite 
€"(I) = E ,  + V,(I) ,  with V,,(z) a fluctuation potential around e , .  Then, 
equation (4) becomes 

Some comments on equation (5) are in order. First of all, for an electron in the nth 
subband ( E  > e , )  in the quantum wire, equation (5) shows that the nature of the 
electronic states along the wire is controlled by the quantity V,,(z) which is related 
to the boundary fluctuation directly. Secondly, among the various possible forms of 
V,(z), three cases are of particular interest: (i) V,,(z) 0; (ii) V n ( z )  periodic; (iii) 
V,,(I) random. The V,,(z) = 0 case is simply the ideal sample case, where from 
equation (5) one recovers the solution E = E , , ~  = E ,  + fi21C2/2m'. 

When V,(z) is periodic, equation (5) effectively represents an electron with 
energy measured from en moving in a ID periodic potential V,,(z). AEsuming that 
V,,(z) has an amplitude V, and a period a ,  then the original free electron energy 
dispersion along the 2-direction (corresponding to an ideal homogeneous boundary) 
is broken into many mini-subbands having a mini-width and mini-gap of the order of 
7r21iZ/2m*a2 and Vu, respectively. The above observation is very interesting in that 
by manufacturing an appropriate periodic boundary on a quantum wire, it opens up 
the possibility of testing many ID band models experimentally. This is because the 
estimatcd mini-gap (V, - 2 K  if we use a harmonic potential model with wu - 20K 
and Vu/w, - 0.1) is in a range detectable by experiments. 
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It is interesting to note there is other evidence that the above subject is worth 
pursuing further. In a recent work, Kumar er a1 [9] have studied the detailed shape 
of the confined potential in the presence of a periodic perturbation to the width of 
the wire. Their self-consistent numerical calculation demonstrates that the effective 
potential well for the channel electron gas does indeed have a good sinusoidal shape 
as the high-wave-vector components of the gate roughness are found to be attenuated 
out. In other words, a simple periodically perturbed effective potential well may be 
achievable under the experimental conditions. 

3. Strong localization near the bottom of subbands: randomly fluctuating boundary 

We now study the randomly-fluctuating boundary case, where we assume the 
maximum fluctuating amplitude V, of V,(z) is much less than the characteristic 
energy of the confinement potential. In this case, equation (5) effectively represents 
an electron in a one-dimensional random potential. The difference is that here the 
wave function $,, is a two dimensional quantity as defined by (3) and (4). It follows 
that the usual arguments concerning all the states of electrons in a one-dimensional 
random potential does not apply to the QID equation (5), and one can directly extend 
the Mott-Stern localization theory [1&12] for the ZD electron gas. We note that if 
we replace the z in (1)-(5) by a 2D vector r and V,(z)  by V, ( r )  a 2D random 
potential, then (5) is a direct mathematical manifestation of Mott and Stern’s idea 
that a randomly-fluctuating boundary ptential is a source of the band tail localization. 
Moreover, since (5) is good for any value of n as long as E > e,,, it demonstrates 
that the Mottatern localization theory applies to all the subband tail regions for a 
quantum confined system. In other words, (5) tells us that near the bottom of each 
populated subhand, the electron states in a semiconductor quantum wire are strongly 
localized (!qd 2 1) in the random-fluctuation boundary model, and the energy range 
of the localized states is of the order of V$) (the mobility edge). 

In addition to the above general obscrvation, the suhband tail localization brings 
more new physics to the QlD system. First of all, our finding of the localization 
in the suhband tails implies that a random-fluctuation boundary can wipe out the 
divergence of the density of states originally existing in the free electron model. This 
is illustrated by figure 1, where one observes that with the tail region localization, the 
density of states is now wcll behaved. Secondly, our model indicates that for each 
value of electron energy E at el < E < E( + Vi), there exist e + 1 degenerate 
states among which the states belonging to the top subhand are localized (see the 
insert of figure 1). In the literature it is generally argued that extended and localized 
states cannot coexist at the same energy for a given configuration [12]. Since the 
semiconductor quantum wire is very often populated with several subbands and the 
electrons belonging to different subbands have different symmetry propertics, what we 
have presented here is a first example of the possible coexistence of the extended and 
localized states at the same energy with different symmetry in a quantum confinement. 
Thirdly, the discussion of the boundary condition of the semiconductor quantum wire 
is practical in the sense that it is more easily controlled experimentally than that of 
the ZDEG, where a detailed knowledge of the interfacial potential is generally lacking 
P11. 
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E F  (units of hw. ) 

Figure 1. Density of stales for  electron^ in a semiconductor quantum wire with a 
mndomly-fluemaling b u n d a y  using the harmonic potential model. ’The suppression of 
the density of stales near ~p fhwo of inleger values is due to the Andenon localization 
in the subband mils as indicaled by lhe shaded areas in the insert for the energy e , ~  
versus WYC vector k .  

4. Application: conductance near the subband tail region 

Recently, in their transport measurements on a device consisting of a grating of 
multiple parallel quantum wires  paw) extending from source to drain, Ismail e[ a/ 
[17] have identified intcresting negative differential conductance in the subband tail 
region. It is stressed by the authors that the advantage of having a large number 
of wires in parallel is to average out the universal conductance fluctuations and 
weak localization effects, which are caused by randomly distributed impurities. In 
a subsequent theoretical study of the subband effect on the quantum transport of 
MPQW, using the generalized quantum Langevin equation approach [7] we obtaincd a 
fairly good fit to the experimental data for the conductance (see the insert of figure 2). 
The only unsatisfactory part is in the subband tail region where the theoretical value 
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of the conductance always has a sudden drop whenever the Fermi energy reaches the 
bottom of another subband (even in the case where the level broadening effect and 
the electron multi-suhband screen effect are included), while the experimental curve 
only shows a very smooth change. Here we show qualitatively that once we include 
the subband tail localization effect due to the random-fluctuation boundary discussed 
in the previous section, the sudden drop of conductance will be smeared out. 

I 0.5 1.0 1.5 2.0 / I - 
0 

0.5 

Figure 2. Schematic piaure for the conductance G versus Fermi energy cp near the mil of 
the nlh subband far a mullipie parallel quantum wire with random ‘wundary fluctuation 
and harmonic mnlinemenl potential model (with WO the characteristic frequency). Full 
line: T = 0, with a mobility edge V L )  but neglecling lhe influence of the localized ~ l a t e s  
on the mnduelion. Dot (dashed) line: T = 0 (T # a), and including lhe contribution 
of lhe localized states. The insel is lhe theoretical resull (full line) of [7] for a sample 
wilh homogeneous bounday as compared vilh the experimental dam (dashed line). 

The physical mechanism can be understood as follows. When the Fermi cncrgy 
increases so as to reach the bottom of another subband, there appear two kinds 
of electrons at the Fermi level, one is in a localized state (which arises from the 
randomly-fluctuating boundaly) in the fop subhand and the ofher is in an atended 
state in the lower subbands. At T = 0, thc presence of the localized states will rcducc 
the conductance of the system through the process of tunnelling and trapping, both 
of which depend on the number of the available localized states. This decreasing 
trend in the conductance i~ kept as long as the Fermi energy k below the mobility 
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edge of the top suhband. After eF passes the V$), all the states at cF are extended, 
and the conductance of the system recovers the metallic increasing behaviour. 

The mathematical model for the conductance G in the above described region 
(e, < eF < e, + VZ)) can be formulated hy using the following facts: (i) at the two 
end points G, E G(c,) and GM G G(en + V$)) ,  the conductance can be evaluated 
by the usual conductance calculation scheme for the extended states; (ii) in between, 
G decreases. 

Fint, we qualitatively discuss the T = 0 situation. Because the increase of the 
number of the localized states is proportional to for a 1D subband, we will 
ussunie that G is proportional to m. It follows then that 
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c(EF) = (cU - GM) ( - /%) + GM 0 < cF - en < v p  (6) 

where Go and G, are to be evaluated by some known conductance formalism for 
the extended states. The dotted line in figure 2, gives (6) for the nth suhband for 
a MPQW, where the values of Gu and G, are taken from our previous theoretical 
calculation (see inset of figure 2) for the homogencous boundary system. Specifically, 
we take for G,,, the wlue of G at the dip and we assume V 2 ) / R w ,  < 1 so that 
G, takes a value on the shoulder next to that dip. As can be seen from the figure, 
at T = 0 once the localization effect of the hand tail states is taken care of, the 
conductance changes smoothly with eF except at the point cF = c, + V z ) ,  which 
is still at variance with the experimental data (see inset of figure 2). Therefore. a 
finite-temperature theory for the localization effect in the MPQW is needed. 

In the following we include the thermal effect by considering the contribution of 
the localized states to the conductance. According to the Mott theory [12] at T # 0 
and cF - en < VZ), the localized electrons below tF can he thermally activated 
by hopping into a nearby state above tF. As stated earlier, we consider our Q1D 
system has a 2n wave function, as a consequence of which it can be treated by the 
Mott-Stem zn theory [1&12] of band tail localization. Therefore, for the QlD system 
we follow exactly Mott’s treatment of hopping conductance [12]. First we Set up 
the hopping functional followed by finding the optimum hopping distance. For a 1D 
hopping system with hopping range R, the density of states per unit ene ra  range is 
2RN(cF), where N(tF) is the density of states at cF. The inverse of this quantity is 
the activation energy for the hopping process through the distance R, 

The hopping functional is defined as 

F(R) ~ e-ZmR-AE/knT 

where A E  is defined by (7) and l / a  is the decay length of the localization wave 
function. From (7) and (a), the optimum hopping distance is determined by solving 
a F/a R = 0, which gives 

n = ( 4 a N ( e F ) k B T ) - ’ / 2 .  (9) 
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Next, substituting (9) for the R in (S), we obtain the hopping probability and the 
conductance for the localized electrons in the top populated subband 

GL = G, exp (-G) 
where Go is a temperature-independent prefactor, and 

with a-l the decay length of the localized wave function, and N ( e F )  the density of 
States at eF. We note the T-’IZ law identified by (10) is also obtained by Shante and 
Varma [18] in a different approach for a parallel chain system with small disorder SO 
that electronic wave functions extend over several sites. 

Our estimate for Tu of (11) is carried out in the following way. First, we assume 
that after cF passes the mobility edge VC’, all the band tail states have the same 
value of a = a,. Since we are interested only in the contribution of tne localized 
states to the conductance, the density of states in this case is roughly 

Using (11), (12) and a = au, one obtains 

- . -r J eF - E , ,  

where T, is defined by 

In addition, the 0 < eF - en < Vz’ part of (13) is obtained as follows. When 
the Fermi energy is below the mobility edge (0 < cF - E, < VCI), it is known [I21 
that a has a power law dependence on the energy, 

’I 

a = au (S) 0 < CF - e ,  G v p  

where by definition, a = a,, at eF - en = V z ’ .  The density of states for this case is 
roughly 
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Substituting (15), (16) into ( l l ) ,  and assuming = i, we obtain the 0 < tF - en < 
V;' part of (13). We note that (13) is chosen by simply noticing the fact that at 
tF - t, < V z ' ,  G, increases with tF because it becomes harder for the hopping 
of the localized states once the rF passes the mobility edge V z ' .  We stress that 
the use of approximation (13). even though very crude, makes the physical process 
described by (10) much clearer. By definition, the T, in (13) is simply the value of Tu 
at tF = t, + V Z ) ,  which can be easily estimated once the form of the confinement 
potential is known. For example, in the harmonic potential model V(y)  = $ m w i y 2 ,  
with b = G, (1 - b-', from (14) one has 
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If we take V$) - lO-'fiw,, and hw, o 2meV, then T, - 10K. 
At T # 0, the total conductance of the MPQW consists of the contributions 

from the extended states and the localized states. Awming that the temperature 
dependence of the extended states contribution to the conductance is not vcry 
sensitive at k B T  i< hwu, and the localized states contribution is the main temperature 
effect, the conductance (10) can then be simply added to the T = 0 conductance. 
Since our attempt here is to  clarify the basic physical process for the transport in the 
band tail region and since the theory presented here depends on a choice of some 
unknown parameters, no detailed fit between our theory and experiments will be 
attcmptcd in this papcr. Instead, wc will only draw a schcmatic picturc to dcmonstratc 
that the theory presented here can explain the relatcd experimental data. In figure 2 
we plot G versus cP near the tail region of the nth subband for a MPQW with randomly 
fluctuating boundary and harmonic confinement potential. The figure shows that for 
a MPQW with randomly fluctuating boundary, because of the combined effects of the 
trap-tunnelling and the hopping from the localized states, once tF reaches the bottom 
of a new subband, the conductance at T # 0 changes smoothly. It drops first and 
then increases after tF passes the mobility edge of that subband. This explains the 
experimental results (dashed line in the inset of figure 2) that the conductance of 
MPQW has many saddles in consecutive order when sweeping the substratc voltage 
(which controls the tF) to the sample. 

5. Conclusions 

We have shown in this paper that, in general, the inhomogeneous boundary effects of 
a semiconductor quantum wire can be studied by reducing the problem to an effective 
ID Schrodinger equation (4) along the wire. In that equation, the deviation from the 
homogeneous boundary is represented by a position- and subband-dependent effective 
ID potential E,(.), and the wave function $,, is a two-dimensional quantity. This 
$n is also effectively one-dimensional in the adiabatic approximation, and then the 
motion of electrons is reduced to a 1D potential problem (see (S)), with a potential 
provided by the deviation from the homogeneous boundary. When the boundary of 
the wire varies periodically then the original free electron energy dispersion along the 
x-direction (corresponding to an ideal homogeneous boundary) is broken into many 
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mini-subhands. As a result, a quantum wire manufactured with a periodic boundary 
should be an interesting system to test the ID band model experimentally. 

When the boundary of the wire varies randomly, we argue that, near the bottom 
of each populated subband, the electron states are strongly localized due to Anderson 
localization. This is a direct extension of the Mott-Stem localization theory of the 
ZD electrons to the QID multi-subband system. In particular, we identify some new 
features of the QID subband tail localization: (i) the elimination of the divergence of 
the density of states originally present in the homogeneous boundary model, (ii) the 
coexistence of extended and localized s t a t a  in the Same energy region but in different 
subbands. Also, we apply OUT theory to explain the recent experimental results of 
Smith el af [l] for the multiple parallel quantum wires, where many smooth saddles 
were observed consecutively in the conductance curve when sweeping the substrate 
voltage applied to the sample. 

The transport theory presented in this paper for the semiconductor quantum wires 
is based on a physical picture of all the electronic states along the wire being extended 
except that those in the tail region (defined by the mobility edge) of each subband 
are localized. When the electron states are extended, and when the mean free path 
as well as the inelastic scattering length are much smaller than the sample length, the 
conventional transport theory is then applied to treat the quantum effect due to the 
presence of multi-subbands. After including the hand tail localized states, our theory 
is in semi-quantitative agreement with the experimental results. 

Recently, there have appeared other attempts [19,20] to explain the same 
experimental results of [17] from a different perspective. In [I91 starting from 
a localized picture and performing a numerical calculation, the conductance drop 
immediately after a new subband is populated, is associated with a decrease of the 
electron localization length. Similar to the present work and the experimental results 
of [l], smooth dips in the conductance versus tF plot, are identified near the region 
of the opening of a new subband. Unfortunately, no comparison with experimental 
results is available in [19]. Nevertheless, it is very interesting and our approach and 
that [I91 give similar results even though two different approaches are used. 
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